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ABSTRACT

Silsesquioxane nanoparticles are composed of repetitive organosilica fragments in their frameworks and are
now recognized to have outstanding functional fertility. Depending on the organosilane and the synthetic path-
ways, silsesquioxane NPs can be pendant, bridged, dense or porous. Recently the diverse functionalities of meso-
porous silsesquioxane nanoparticles have been exploited for the sake of drug-related biomedicine. Fine-tuning
the silsesquioxane nanoparticles characteristics allow not only a superior retention capacity of therapeutics with-
out the need of any further modification, but also a controlled release through various environmentally-stimu-
lated triggers. The main focus of the present review is to highlight the different types of silsesquioxane nanoparti-
cles and their exceptional features focused on controlled delivery of drugs, proteins, antibodies and DNA through
pH, redox or light stimuli.

1. Introduction

Currently, we are facing a major problem of delivery of chemother-
apeutics into diseased cells. A short half-life of the drugs and their
off-target activities requires high dosages to be administered, resulting
in significant side-effects to healthy tissues [1]. Recently, nanomedicine
has emerged as a means to deliver drugs to tumor area by either ac-
tive or passive targeting and to deliver their protected payload therein
while minimizing side effects. In this field, different systems such as li-
posomes [2-5], polymers [6-8], polymerosomes [9], silicon nanopar-

ticles [10-14], and hydrogels [15] were used and some formulations

are even approved by the American Food and Drug Administration [16]
(FDA). However, these systems present several downsides leading to
serious barriers to their long-term application in vivo such as dose-re-
lated toxicity, drug leakage, and stability in biosystems. Siloxane-based
(Si-O-Si) nanomaterials, made through sol-gel processes, appear to be

one of the most potent candidates to handle that burden because of their
biocompatibility (recognized as generally safe by FDA [16,17]), versa-
tile morphologies, controlled pore size and volume (when porous), and
surface chemistry; altogether dictating the fate of the nanoparticle and

its payload. In the realm of siloxane-based nanoparticles, one must dis-
tinguish between two groups:

1.1. Pure and organically-modified mesoporous silica nanoparticles (MSNs
and ORMOSIL respectively)

Pure silica Si02 MSNs are prepared using a "universar tetralkoxysi-

lane silica source (e.g. TMOS, TEOS, TPOS), whereas ORMOSILs
(5i02)1_.(RSi01.5)x (R = organic group, x = its molar ratio to main sil-

ica source) incorporate a minor amount of organosilanes to confer func-
tional surface activity to nanomaterials. This group has been extensively
investigated in nanomedical research over the past decade and has been
the subject of many recent reviews [18-54]. Therefore we have limited

the scope of this review to the following Group:

1.2. Silsesquioxanes: pure organosilica nanoparticles RSi01.5

These are engineered by exclusive use of organosilane(s) through a
standard sol-gel process [55-60] (hydrolysis-polycondensation reactions

under acidic, basic or nucleophilic (F -) catalysis). Pendant monosi-
lylated or bridged polysilylated organosilanes can participate in
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the formation of pendant or bridged silsesquioxane (herein, designated
as PSQ or BSQ respectively) (Scheme 1). Generally, the development

of these nanoparticles is more complicated than their silica counter-

parts because of the extensive participation of organic fragments that

can affect the solubility or other physiochemical properties of the pre-
cursors. When a mesoporous silsesquioxane framework is obtained upon

use of a structure-directing agent (e.g., surfactant), it is also referred

to as Periodic Mesoporous Organosilica (PMO) (Scheme 1). Incorpora-

tion of a structure-directing agent renders the formation of porous PMO
nanoparticles (nanoPM0s) even more difficult than dense PSQ or BSQ

nanoparticles; however, scientists have been able to overcome serious

synthetic challenges and PMOs have successfully reached the nanoscale

[61,62]. In addition to the fact that PMOs incorporate the above-men-
tioned advantages of MSNs such as tunable pores size and volume, they

nonetheless exhibit a fundamental difference compared to MSNs and

ORMOSILs, wherein their homogeneous distribution of organic moieties

throughout the complete framework makes them unique in terms of

functional fertility.

It is worth noting that the nomenclature of different organosilica

materials is still a subject of debate, since no clear designation of vari-

ous frameworks has been established by the IUPAC. For instance, read-
ers can find several papers describing ORMOSILs as PMOs [63-66] or

PSQs [67]. Also nanoPMOs can be designated as MON (Mesoporous

Organosilica Nanoparticles with analogy to MSNs) [68]. Undoubtedly,
the (bio)chemical versatility of PSQ, BSQ and PMO nanomaterials will

be their trebuchet into a central part of nanomedical research in the next

years. In the next sections we will present a brief evolution of the his-

tory of silsesquioxane materials and describe how they have been used
to date in nano-medicine as drug/biomolecule delivery vehicles.

In the present review we focus in particular upon the controlled

release properties of silsesquioxane nanoparticles. Only nanomaterials

made solely by organosilane(s) and exhibiting a drug release behavior

Porous BSQ
111

Periodic
Mesoporous
Organosilica
(PMO)

Pendant
Silsesquioxa ne

(PSQ)

Bridged
Silsesquioxane

(BSQ)

Scheme 1. Representation of the classes of sol-gel processed silsesquioxanes: pendant
monosilylated organosilanes produce PSQ, bridged polysilylated organosilanes yield BSQ,
bridged polysilylated organosilanes in the presence of surface-directing agents yield PMO.

will be reviewed, namely PSQ, BSQ and PMO nanoparticles (although
one example showing PMO-like nanoparticles possessing an extremely

high organosilane extent is reported for biocompatibility studies).

2. A strand of history

After the revolutionary concept of periodic micro/mesoporous sil-

ica materials was introduced in 1990-1992 by Kato et al. [69] and

Kresge et al. [70,71], pioneering studies of silsesquioxane materials be-

gan in 1999-2000 with the work of Inagaki [72] and Ozin [73], who

reported the first PMOs with ethane (—Si—C2H4—Si—) bridged fragments,

prepared using a base-catalyzed aqueous (hydrolytic) route, and Stein

who produced ethylene (—Si—C2H2—Si—) bridged PMOs with subsequent

functionalization (via bromination) [74]. Paving the way toward ap-
plications in medicine, Brinker et al. used an aerosol assisted evapo-

ration-induced self-assembly process [75,76] to produce the first PMO
nanoparticles incorporating aliphatic (—Si—(CH3).—Si—, n = 2,3,6,8,10),

unsaturated (—Si—CH3—C2H2—CH3—Si—) or aromatic (—Si—C6H4—Si—) bridg-

ing organosilanes [77]. Shea et al. reported more detailed studies of

the sol-gel synthesis of monolithic bridged silsesquioxane aerogels and
xerogels using 15 different alkane-, alkene-, alkyne-, aromatic-, func-
tionalized- and organometallic-bridged precursors [78] and investigated

thereafter the mechanism of gelation [79]. The self-assembly/nanos-
tructuring mechanisms of BSQ were fundamentally studied [80-89]

and since then the engineering of new bridged silsesquioxane mate-

rials has been a very fertile ground for catalysis [90-101], light har-

vesting [94,102-106], luminescence [102,107-112], tailoring the hy-

drophobic/hydrophilic balance [113], metal sequestration/stabilization

[114-117], thin films [102,105,107,110,118-120], reactivity-probes

[121-123], molecular sieves [124-127], structure-direction

[73,128-136] or related relevant fundamental studies [133-158].

3. Compatibility with biosystems

Biocompatibility is a fundamental requirement of any nanosystem

intended for biomedical applications. At a minimum nanoparticle carri-

ers should show minimal cellular toxicity, as judged e.g. by dose-depen-
dent toxicity assays and potential to cause hemolysis of red blood cells.

It is further imperative that the nanoparticle carriers exhibit in vivo sta-

bility so as to avoid aggregation and reduce non-specific binding and up-

take by the mononuclear phagocyte system (MPS) and thereby increase
circulation times and enhance both passive and active targeting

3.1. Synthesis

Following the first report of the synthesis mesoporous silsesquiox-

ane nanoparticles via an aerosol EISA process by Brinker and coworkers
[77] in 1999, many following works developed PSQ and BSQ nanopar-

ticles through a hydrolytic sol-gel (Fig. 1 a) process using a plethora
of mono-,bi- or polysilylated organosilanes with pendant or bridging

organic groups ranging from simple aliphatic to polyaromatic,

metal-chelating and highly functional fragments. The morphologies
(Fig. 1 b-i) can be tailored so that nanospheres [159-165], nanocrys-

tals [166], hollow nanospheres [61,167-171], nanodonuts [172], nan-

otubes [125,173-176], nanorods [177,178], multipodal PMOs [179],

deformable hollow PMOs [180], and core-shell nanoparticles [181-185]

were produced via soft or hard templating pathways with size ranging

from a few to several hundreds of nanometers. The synthesis strategies

of PSQ, BSQ and PMOs nanoparticles are comprehensively reviewed in

some excellent papers [68,186,187].
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silsesquioxane nanoparticles. Scale bars (b-e) = 100nm and (f-i) = 500 nm. b) Reproduced with permission. [1] Copyright 2012, Royal Society of Chemistry. c) Reproduced with permission

from [2]. Copyright (2014) American Chemical Society d) Reproduced with permission. [3] Copyright 2015, Wiley-VCH e) Reproduced with permission. [4] Copyright 2016, Wiley-VCH f)

Reproduced with permission. [5] Copyright, 2016, Elsevier. g) Reproduced permission [6] Copyright 2017, Wiley-VCH. h) Adapted with permission from [7]. Copyright (2001) American

Chemical Society i) Reproduced with permission from [8]. Copyright (2015) American Chemical Society.

3.2. In vitro cell viability and in vivo biodistribution

Biocompatibility is an important criterion for biomedical applica-

tions and it has been demonstrated for pendant and bridged silsesquiox-

ane nanoparticles in several studies.

In pioneering work, the Prasad group showed in 2003 that 20-25 nm

vinyl-amine PSQ nanoparticles used as carriers for a hydrophobic photo-

sensitizing anticancer drug, are non-invasive for UCI-107 and HeLa cell

lines [188]. In 2010, the same group used the same PSQ (in a PEGy-
lated form, labeled with DY776 and radionucleus 124) to study their in
vivo biodistribution and clearance [67]. It was shown that 360 h post-in-

jection, the majority of nanoparticles were cleared through hepatobil-

iary excretion (Fig. 2c, d). After 15 days of exposure, selected organs

from dissected mice showed no histological abnormal behavior or toxi-

city (Fig. 2a, b). They concluded that this system is "potentially an ideal

attribute for use as biocompatible probe for in vivo imaginr. More re-

cent work [32,189] on dense BSQ made purely by trypsin-cleavable ox-
amide bridges [190] (Fig. 2e,f) or by mixing thioether [191] with por-

phyrin or a two-photon sensitizer showed complete biocompatibility.

Additionally, bridging porphyrin/iodine BSQs used for wide-field pho-

todynamic/photothermal therapy also showed high in vivo compatibility

[192].

Switching to PMOs, Huo et al. described a straightforward syn-

thesis of nanoPMOs with different bridging groups (methylene, ethyl-

ene, ethenylene and phenylene) [193]. Importantly, they showed that
FITC-labeled methylene-PMOs have a high biocompatibility demon-

strated by HeLa cell viability of > 75% even at high nanoparticle con-

centrations

(125 pg/mL media) after 24 h exposures at 37 °C (Fig. 3a). Furthermore,

ethenylene and bispropyldisulfide mixed PMOs were synthesized with
different extents of the bridging organosilanes [194]. These nanomate-
rials beautifully showed a degradation behavior triggered by mercap-

toethanol simulating the reducing conditions in the cancer cell. Again,

these PMOs showed a very good biocompatibility towards MCF-7 cells

where less than 20% cells died after 3 days of incubation at high concen-

tration reaching 1251.1g/mL (Fig. 3b). More recently, phenylene-bridged

PM05 were produced in different morphologies (wires, rods, bent rods
and spheres) simply by tuning the co-solvent during the synthesis (Fig.

3c), and their compatibility towards HeLa cells was studied [195]. It

was shown that less cell death occurred as the morphology is extended

and this was attributed to easier internalization in the case of sphere-like

morphology (Fig. 3d). Overall PMOs with different organic bridging

groups in different studies showed biocompatible behavior promising
their increasing use in nanomedicine.

3.3. Hemolytic activity

Red blood cell (RBC)-friendly behavior is a further criterion for

nanosystems to be considered for clinical translation.
The very first reliable studies of hemolytic activity were carried out

by the Kuroda and Takeoka groups where they proved that etheny-

lene-bridged colloidal PMOs nanoparticles (20 nm) showed less he-

molytic activity than analogous MSN and dense silica nanoparticles to-
wards bovine RBC [196] (Fig. 4a). In fact, it has been suggested that the

hemolytic activity of siliceous materials is related to the presence and

density of silanol groups on the surface of the material [30,197,198],

3
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and more precisely, to the electrostatic interaction between negatively
charged silanolates and positive head groups of the RBC membrane

lipids [198]. The lower hemolysis induced by PMOs is explained mainly

by the lower density of silanol groups on the surface due to the high

extent of organic bridging groups, but also, by the lower acidity of the
existing silanols due to high concentration of electron-donating etheny-

lene groups [55].
Later on, phenylene PMOs showed better compatibility to RBC than

their MSN counterparts [199] (Fig. 4c,d). This result was demonstrated
in parallel to an important in vivo behavior of these nanoparticles, where

intravenously injected mice dosed with 100 mg/kg for 2months showed

no death or uncommon behavior as the exposed organs confirmed an

excellent histocompatibility for the studied nanomaterials. Also, triple

hybridized yolk-shell PMO-like MSNs (containing up to a 75% organosi-
lane mix: methylene, thioether and phenylene) were proven to have
very low toxicity toward breast cancer MCF-7cells even at 1200 pg/mL

and negligible hemolytic activity ( < 2%) even at concentrations as high

as 2000 j.tg/mL [200] (Fig. 4b).

Unlike MSNs where passivation of the surface by organic moieties
(e.g., PEG) is crucial to overcome or reduce the hemolytic activity

[201], PMOs are now proven to have a low hemolytic potential even

without any subsequent modification.

3.4. Colloidal stability and targeting properties

The high extent of organic fragments within a silsesquioxane frame-

work reduces correspondingly the silanol concentration which has a di-

rect effect on the charge and the stability of this family of nanomate-

rials. For pure silica nanoparticles, which are moderately to strongly

negatively charged at neutral pH depending on their extent of poros-

ity, the charge repulsion responsible for the colloidal stability of nano-

materials is reduced in high ionic strength physiological media induc-

ing the aggregation of administered nanoparticles. Another barrier for

nanoparticles to be translated into nanomedicine is the mononuclear
phagocytic system (MPS), which is the first line of defense against the
"foreign invaders" inhibiting their intended therapeutic efficiency. A

potential solution is the passivation of the outer surface by "stealthy'

4
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Copyright 2014, Wiley-VCH. c,d) Adapted with permission [6] Copyright 2017, Wiley-VCH.

PEG that reduces protein adsorption (opsonization) and uptake by the

MPS, thereby increasing the circulation time of nanoparticles. In con-

trast to MSNs where numerous papers treated this aspect [201-206],

very few works have outlined the colloidal stability of pure organosilica

nanomaterials, as they are still considered "new to the market". Della

Roca et al. post-functionalized Pt-BSQ (developed in Section 4.2.1) with

PEG through an EDC chemistry to increase its in vivo performance. They

have also successfully conjugated onto the BSQ nanoparticles targeting
ligands for ad33 integrin and sigma receptors, respectively, cyclic Argi-

nine-Glycine-Aspartate (cRGD) and anisamide (via a PEG spacer). The

additional value of the targeting ligands was highlighted in vitro and in
vivo. In the former case, IC50 values were reduced 2-10 times for DLD-1

and HT-29 colon and BxPC-3 pancreatic cancers when cRGD was an-

chored and 3.5 times for AsPC-1 pancreatic cells with PEG-anisamide in-

troduced as the targeting molecule. In addition, in vivo performance was

confirmed in the latter case by the reduction of AsPC-1 tumor volume
in female athymic nude mice by 50% and 40% respectively for PEG-
or PEG-anisamide-bearing BSQ compared to untreated control mice.
The targeting effect of anisamide on H460 and A549 lung cancer cells

was also highlighted by the same group using gadolinium-based BSQ

nanoparticles where the (60-70%) reduced amount of released Gd on

solely PEGylated BSQ (compared to native non-PEGylated Gd-BSQ) was

corrected and even enhanced after conjugation with targeting anisamide

(130-140%). The low Gd release from untargeted PEGylated BSQ is an

expected result of the low cell uptake induced by the PEG stealth behav-

ior.

Lu and Zhao [180] recently reported novel deformable hollow tetra-

sulfide-PMOs passivated by maleimide-PEG and exhibiting excellent dis-
persibility in cell culture media. Although the system was not compared
to non-PEGylated PM0s, we expect the latter to be unstable in physio-

logically relevant media.

Overall the passivation of PMOs by moieties that increase their sta-
bility in bio-relevant environments is crucial for their bioapplications.
Targeting will enhance the therapeutic effect of administered nanosys-

tems and increase their potential for in vivo translation.

3.5. Comparison with MSNs

Although a library of silsesquioxane nanoparticles of different mor-

phologies was presented here, their synthesis remains highly challeng-

ing compared to MSNs especially if the goal is to yield a full batch of
monosized and homogeneously porous nanoparticles. As a rule, synthe-

sis becomes more difficult and complicated as the organic bridges get

larger or more voluminous since the organic moieties may exhibit a
preferential interaction or difficult solubilization.

In terms of biocompatibility, organosilica may be considered at least

as biocompatible as silica nanoparticles. Silica is generally recognized

as safe by the FDA as it dissolves overtime to yield non-toxic silicic

acid. On the other hand, the possibility to insert degradable fragments
in a silsesquioxane framework also allows its degradation with rates

potentially exceeding those of native MSNs and with the potential of

triggered degradation. Additionally, on the hemocompatibility level,

silsesquioxanes exhibit a lower hemolytic potential due to their lower

5
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silanol concentration, which is a major determinant of hemolysis. As

an example hollow PMOs showed no hemolysis whereas hollow MSNs

should up to 75% hemolysis at 2 mg/mL, (Fig. 4d).

The colloidal stability of organosilica and silica nanomaterials is

excellent in water when the pH is much greater or lower than the

pKa. Due to electron providing effects of organic fragments, the pKa of

silsesquioxanes is shifted toward neutral pH (pKas,1sesqffioxane 5-7) com-

pared to pure silica MSNs (pKamsN —1.5-3). This would suggest that

MSNs have a greater stability under neutral conditions. In both cases,
however, when exposed to salt-rich media the nanoparticles will physi-

cally aggregate as a function of time, requiring surface passivation with

PEG or other polymers or supported lipid bilayers for biomedical appli-
cations.

4. Stimulus-induced cargo release

Organosilica nanoparticles are being increasingly used in cancer
therapy [35,207,208]. The cancer microenvironment is substantially

different than that of normal cells and tissues; the acidic and reduc-

ing conditions associated with cancer microenvironments have been ex-

ploited by researchers resulting in pH- and redox-responsive materials
capable of stimulus-triggered release of therapeutics.

4.1. pH-triggered release

The acidic environment of endosomes and lysosomes is a manda-

tory checkpoint for nanoparticles having undergone endocytosis, and
will definitely modify the surface characteristics of the nanosystems (es-

pecially the charge). Highly functionalized and drug-laden nanocom-
posites can then be created in a way to harness this feature for

a superior retention through electrostatic attraction or pH-controlled re-

lease via charge repulsion.

In 2005, Prasad et al. reported an unprecedented work on pendant

silsesquioxane (PSQ) NPS for loading and delivery of DNA through a
non-viral pathway [209,210]. Aminated and porphyrin-containing pos-
itively-charged PSQs were produced to bind negatively charged DNA

with an intercalating fluorophore. Gel electrophoresis confirmed the

protection of PSQ-bound DNA from enzymatic digestion. The porphyrin

and the DNA's fluorophores were the FRET donor and acceptor in or-

der to monitor the proximity (binding) of DNA to the PSQ. Under in vivo

conditions, a FRET signal decrease implied a separation between DNA

and the porphyrin-PSQ framework. This indicated the release of DNA
due to the increased acidic conditions in the living cells that induced

destabilization of the DNA-PSQ complex. Active DNA delivery to the cell

nuclei was evidenced by a pEGFP signal [209]. No PSQ-induced toxicity

was observed even up to one month after transfection. This concept was
also exploited to achieve in vivo gene delivery to the mouse brain [210].

A key example worth reporting even though nanoparticulate sys-

tems were not developed: BSQs were obtained using a triazine-bridged
bisilylated organosilane exhibiting 3 sites to strongly H-bond cyanuric
acid [211] or a prodrug containing three 5-Fluorouracil moieties [212]

(Fig. 5). A mild acidic treatment (pH = 5.5) suppresses the H-bonding

with the cyanuric acid or prodrug inducing its release and resulting in,

good performance on MCF-7 cells. Although these H-bonded molecules

are key-fragments of the material skeleton, their release did not induce

any structural collapse, establishing these BSQ as promising and reliable

frameworks for pH-sensitive drug delivery.

The first application of PMOs in drug delivery was reported in 2013

where hollow PMOs (HPMOS) were prepared by etching a Si02 core of
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a core-shell construct [168] (Fig. 6a). First, bulk silica nanoparticles

were made according to the Stöber method using TEOS then coated with

ethane-, ethylene- or phenylene-bridged organosilanes through a sol-gel

process. Based on the difference in condensation degrees [213], the

etching procedure was carried out by reacting HF over the silica core for

one hour to yield hollow organosilica nanoparticles. Different amounts

of HF yielded different etching extents and thus various nanoparti-

cies morphologies, namely yolk-shell (partial etching) and hollow (com-

plete etching) (Fig. 6b, c). PM0s, owing to their hydrophobic charac-

ter, were then able to efficiently load silibinin, a hydrophobic drug pre-

senting very poor bioavailability [214]. Invasiveness of MDA-MB-231

cells (their capacity of migration and infiltration to neighboring tissues)

was assessed in vitro upon exposure to free silibinin and loaded and un-

loaded HPMOs (Fig. 6d). The invasiveness of silibinin-laden HPMOs was

the lowest with about only 10% versus 30% for unloaded HPMOs. Free
silibinin had no effect due to its hydrophobic character that induced
low bioavailability. Hence, the importance of delivery of hydrophobic

anti-metastatic drug into cancer cells through a PMO protecting carrier

was thus clearly highlighted.

Later on, the same group extended this strategy to make ben-

zene-based hollow organosilica nanoparticles for pH-responsive drug
(DOX) and gene (P-gp shRNA) co-delivery to MCH-7/ADR cancer cells

[215]. The delivery of genes can restore the sensitivity of accompanying
drugs by overcoming the drug efflux pump and therefore allow reduced

drug dosages and eventual corresponding side effects.
With a myriad of existing organic groups used in various applica-

tions, the production of structured and porous BSQ is far from being

a trivial task because of the extensive physicochemical input of or-

ganic moieties. The recent advances in nanomedicine require delivery

of larger cargoes (proteins, DNA, enzymes, etc.) to the target cell. How-

ever, it is highly challenging to apply the common pore swelling pro-

cedures used for silica [26,26,216-230] on silsesquioxanes to produce

large pore BSQ. Here a unique example stands out [231]. Recently,

based on a biphase reaction reported to produce large-pore dendritic
MSN [232], a phenylene-bridged silsesquioxane was produced with

dendritic pores with sizes 4.6nm or 7.6 nm depending on the organic

phase formulation (Fig. 7a, b). With these unique pore morphologies,
they loaded up to 80 pg/mg and 154 pg/mg, respectively, of the pro-

tein RNase with a hydrodynamic diameter of 4.7 nm. A sustained release

was obtained with the larger pores, where 50% after 10 h and 80% af-

ter 72 h were released, whereas 90% release was recorded at 10 h for

the smaller pores (Fig. 7c). In this latter case, the size of the RNAse is

equal to the average pore size so a preferential adsorption on the ex-
ternal surface was the origin of this fast release of protein. Accordingly,

these large pore mesoporous organosilica nanoparticles were applied to

MCF-7 breast cancer cells, the results (Fig. 7d) show no effect on cells

when they were exposed to free protein whereas the cell viability de-
creases for 4.6nm pore particles to 65% with negligible difference be-

tween 1, 2 and 3 days since the greatest drug release occurred in the first

12 h. However, the cell viability shows a sustained decrease from 60%

to 45% and 32% at one, two and three days, respectively. This result
is in accordance with the sustained release profile. This important cell

death was attributed to the high amount of RNAse loaded in the pores

of these organosilica nanoparticles due to the intrinsic aromatic benzene

group of the BSQ framework.

4.2. Redox-triggered release

As silica frameworks have proven to spontaneously degrade via
siloxane bond hydrolysis in aqueous systems, they have been exten-

sively applied to biosystems

[24,25,33,35-37,57,64,66,204,229,233-240] after Coradin's group re-

ported the introduction of disulfide bridges in dense silica nanoparti-

cies for the first time [241]. However, with silsesquioxanes, the story

is different. Ethylene-bridged PMOs of
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20nm and MSN counterparts showed drastically different dissolution

behavior in PBS. While up to 85% of MSN were degraded in a week,
less than 10% PMOs were dissolved in 2 weeks [196] (Fig. 8a). The

degradation mechanism of silica starts occurring on the outer surface
by progressive hydrolysis of siloxane bonds resulting in the formation
of non-toxic silicic acid Si(OH)4 byproducts, where the rate of dissolu-
tion is dominated by the silanol/silanonate concentration on the sur-
face [242]. Also, the degradation behavior highly depends on intrinsic
(porosity, condensation degree, surface chemistry) and external (media,
nanoparticles concentration) factors. However, organosilica presents a
significantly lower silanol content as well as an important participation
of organic groups, often hydrophobic, minimizing the effective interface
with the water and significantly decreasing the degradation rate. This
behavior was confirmed again in ethane-coumarin PMOs [243] (Fig. 8b)
where exposure to simulated body fluid (SBF) for 28 days showed no

significant effect on the structure of the materials. Small-Angle X-ray
Scattering (SAXS) confirmed maintenance of the framework structure
and TEM showed no collapse in the morphology (Fig. 8c-d). The mecha-
nisms of degradation of organosilica materials are provided in an excel-
lent review by the Khashab group [242].

This structural stability of organosilica to biological media can be
finger-printed by the scientific community due the accumulation and
persistence of inert organosilica species in organs. Nevertheless, the
functional fertility of organosilica has enabled new frameworks to be
created that degrade under biologically relevant conditions. Biologi-
cally triggered release is achieved by inserting biologically-cleavable
moieties in the organosilica skeleton. Disulfide [168,191,244,245]- and

aminoacid-based [190,246] bridged organosilanes were integrated in
nanoparticles and resulted in excellent degradation behavior upon re-
dox or enzymatic conditions. The integration of such functions in the
organosilica nanoparticles will pave the way into the development of
highly biocompatible systems and improved in vivo reliability.

4.2.1. Redox-triggered degradability of silsesquioxane matrix for assisted-
release

A novel platinum-based BSQ for targeted and controlled delivery of
chemotherapeutics to colon and pancreas tumors stimulated by a redox
trigger was reported by the group of Lin [247,248]. A synthetic bisi-
lylated molecule bearing a cisplatin or cisplatin derivative (oxaliplatin)
was used to make BSQ nanoparticles with Ptly distributed throughout
the framework. Under normal physiological conditions, the Pt"' com-
plex is stable (Fig. 9a) and no or negligible release of cisplatin or ox-
aliplatin was detected. Upon exposure to the highly reducing condi-
tions of the cancer environment (i.e. L-cysteine, glutathione), Pt"' is re-
duced to active Pt" and is no more chelated by the surrounding car-
boxylic groups, thus inducing the release of the cisplatin without re-
quiring particle degradation (Fig. 9b). The Pe therapeutic effect origi-
nates from its capability to intercalate into the DNA strands of targeted
cells thus stopping tumor growth. In order to render the reported sys-
tem more adapted for bioapplications, the external surface was passi-
vated with PEG moieties and, interestingly, it was shown to be slightly
less efficient in vitro (A549 and H460 lung cancer cells) than the free
cisplatin (most probably due the slower cell uptake because of the PEG).
However, the in vivo efficacy was evaluated on mice bearing A549 and
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H460 xenografts subjected to chemoradiotherapy. Importantly, the PE-

Gylated system showed superior results compared to other usually ad-

ministered treatments where the measured tumor volume was 400%,

35% and 25% smaller than the control (saline solution), radiation only,

and free cisplatin combined with 10 Gy radiation treatments, respec-

tively (Fig. 9c), thus confirming that these novel BSQ nanoparticles hold
a promising role in the development of efficient tumor treatment. It is
noteworthy that the same group also reported, based on the same con-

cept, gadolinium-based BSQ nanoparticles for the release of Gd as a con-

trast agent for MRI [249].

Croissant et al. have shown the synthesis of mixed PM05 with

ethenylene (E) and disulfide (DIS) bridges with different weight per-

centages (wt E/DIS = 100/0, 90/10, 75/25, 50/50, 0/100). The shape

(600nm rods to 150nm spheres) and the aspect ratio (5 to 1) of the

nanoparticles were fine-tuned additionally [191]. However, when 100%

DIS was used, a non-porous BSQ was obtained instead of PMO mate-
rial most likely because of the relative complexity of the DIS organic

bridge and that ethenylene groups are necessary to confer porosity to

the organosilica skeleton. With PMOs obtained with lower E/DIS ratio,

an exceptional drug loading (20% wt DOX) was achieved due to the hy-
drophobic character of the PMO pore interiors combined with loading

at acidic pH where the silanol protons were exchanged by the positively

charged DOX, thus confirming the pH-dependence of DOX loading/re-

lease according to an earlier report [216].

Herein, the presence of disulfide-containing bridges endowed the

PMOs with an active response to reducing conditions. For this pur-

pose, p-mercaptoethanol was used in extra- and intra-cellular concen-

trations (6 µM and 2 mM in PBS, respectively) in order to simulate

the higher concentration of glutathione present in the cancer environ-

ment (1—lOmM) than in normal cells (Fig. 10a). Upon exposure of

PMOs to the above mentioned reducing conditions for 48h, a dissolu-

tion behavior was observed in the first hours by TEM (Fig. 10b1—b3)

then fragments

of silica were detected accompanied by a size decrease in DLS, thus con-
firming the degradation behavior of disulfide-containing PMOs trigger-

ing the release of doxorubicin molecules at lysosomal pH 5.5 (Fig. lOc)

into breast cancer MCF-7 cells inducing significant cell death (up to 80%
after 72h incubation at 11.1g/mL) (Fig. 10c1, c2).

In a way to show the versatility of organosilica, Chen, Meng and

coworkers have constructed a multi-hybridized hollow organosilica

nanoparticle through silica etching chemistry. These latter were then

coated in situ by a mixture of two (phenyl and tetrasulfide) (Fig. lla)

and up to five homogeneously distributed organosilanes (ethane-, eth-
ylene-, phenyl-, bisphenyl- and tetrasulfide-bridged bistriethoxysilane)
under basic conditions using CTAB as a structuring agent. Dual-hy-

bridized nanoparticles (containing phenylene and tetrasulfide frag-

ments) were then efficiently loaded (-15%wt) with doxorubicin due to

the 7c-/c stacking and hydrophobic character of the guest molecule. Ad-

ditionally, owing to the biologically-active [250] tetrasulfide fragments
implemented in the shell network, these nanoparticles will present a

specific response to reducing environments. The pH-triggered DOX re-

lease was monitored at different glutathione concentrations (Fig. 11b)

and showed up to a 70% release at [GSH] = lOmM versus less than

20% in the absence of a reducing agent. The release assisted by parti-

cle degradation is also confirmed by TEM where "broken" particles ap-

peared from the first day of incubation and became more pronounced

overtime (Fig. 11c-f).

More recently, an enzymatically-cleavable phenylene-oxamide PMO

was reported. This system relies on the capability of the trypsin en-

zyme to break up amino acids [246]. Due to the high extent of pheny-

lene within the framework, an exceptional compothecin (CPT) and dox-

orubicin loading (up to 80% and 65% wt respectively) was achieved.

Interestingly, the DOX was not released at lysosomal pH in contrast
with what was observed with ethylene-disulfide PMOs suggesting thus

a specific interaction between oxamide moieties and drugs.
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The release of drugs was only triggered upon exposure of nanoparticles

to a trypsin-containing solution for 48 h. This system showed important

in vitro controlled A549 lung cancer cell killing (65% and 85% with DOX

and CPT-laden nanoparticles, respectively).

It is noteworthy that other degradable systems through redox [191]

or enzymatic cleavage mechanisms [190] were also synthesized. How-

ever, the relative complexity of the introduced organosilanes in the used
synthetic conditions was a barrier to make porous structures. The ob-

tained degradable BSQ were though used in nanomedicine for imaging,

and photodynamic therapy.

4.3. External stimuli light-induced release

Although the most abundant work on drug release from silsesquiox-

anes was carried out based on internal stimuli-triggered release, a few
original works were recently reported using external stimuli to induce

the cargo release.

4.3.1. Release of hydrogels with antibody-like affinity
In 2012, Shea presented an original approach for light-induced re-

lease of "externally' loaded biomolecules [251]. A neutral nitroben-

zyl-carbamate bisilylated organosilane was used to make 250nm dense

BSQ nanoparticles. Upon light excitation (A. = 254nm), the carbamate

link is cleaved, inducing the removal of nitrobenzyl cycle and leaving

positively charged amine moieties covering the complete organosilica
framework (Fig. 12a). The original zeta potential of the nanoparticles

= — 40 mV) starts increasing directly after excitation and Increased to

= + 30 mV after 20min irradiation.

This phenomenon was first demonstrated by a light-induced cover-

age of the BSQ surface with 70nm negatively charged silica nanopar-

ticles via an electrostatically mediated process (Fig. 12a-c). In order to

prove the release potential of the system, a positively charged (PA + 74)

polyacrylamide copolymer hydrogel nanocomposites (C = + 37 mV,

size = 74 nm) presenting antibody-like affinity to peptides [252,253],

were adsorbed on the surface through electrostatic attraction. The

Light-controlled charge reversal of BSQ induced charge repulsion of the
antibodies resulting in their quick light-triggered release (Fig. 12d).

4.3.2. DNA release
Following this light-induced charge-reversal concept, Khashab et al.

synthesized hollow BSQ using a photo-responsive bisilylated nitroben-
zyl-based organosilane [254] (Fig. 13a). In contrast to the previous

study, this organic fragment is positively charged in water and has
the ability to become neutrally charged upon light excitation (Fig.

13b). This characteristic was smartly used to load highly negative plas-

mid DNA via electrostatic interaction with the highly positive BSQ
(C = + 46 mV) (Fig. 13b-e). Upon one-photon light excitation, the ni-
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trobenzyl fragments turn neutral, and the charge of the BSQ is mainly

represented by the negatively charged deprotonated surface silanol
groups ( = — 39 mV) (Fig. 13b). This charge reversal phenomenon in-

duced the release of DNA by strong charge repulsion (Fig. 13e) and

was then applied in vitro on MCF-7 cells. The delivery (and transcrip-

tion) of DNA into cell nuclei (to translate mRNA) was successfully as-

sessed by the production of GFP (used as a reporter protein). (Fig. 13f,g)

The uncontrolled release of cargo has always been problematic for
applications of nanosystems in biology [255]. For example, as for silica,

Zink [19,21,256,257], Lin [229,234,236] and Bein [25,258,259] were
very active in innovating so-called nanomachines [25,234,260-266]

in order to prevent payload leakage and enable triggered release.
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As for the silsesquioxanes, various physical interactions with cargos me-
diated by the organic fragments resulted in better retention. Accord-
ingly, silsesquioxanes can be utilized without any further chemical mod-
ification/passivation in order to controllably deliver the payload. This
suggests a superiority of silsesquioxane nanoparticles over their silica
analogs.

4.4. Comparison with MSNs

Native MSNs, per se, cannot be exploited for triggered release at
physiological pH requiring functionalization by stimuli-responsive moi-
eties, which could be time-consuming or induce aggregation.
Silsesquioxanes, are intrinsically and fully built by organic bridges be-
tween siloxanes and they can carry several organic fragments at once.
Therefore, they are more appealing for intended triggered release appli-
cations. For example, a spontaneous cargo release (via electrostatic re-
pulsion) from silsesquioxanes can take place through a charge reversal
phenomenon when the pH turns from neutral to mild acidic under en-
dosomal conditions.

Although it is theoretically possible to post-functionalize MSNs by
any organic functions, the superior amount of active moieties within a
silsesquioxane remains more advantageous in most of the cases.

5. Hierarchically-built systems for synergistic drug release

The production of nanosystems with increasing complexity is con-
stantly being pursued in order to overcome complexity of biological sys-
tems, but especially to develop a system entirely capable of imaging
and eradication of malignant tumors. In this section we will see how
different complex systems were developed not only to load and release
drugs with opposite characteristics (e.g. hydrophobic and hydrophilic),
but also by combining this release with imaging or other techniques that
synergistically diagnose, image and kill cancer cells.

5.1. Dual release of therapeutics

5.1.1. Hydrophilic and hydrophobic
Zhao, Zhang et al. presented an original approach for hierarchi-

cally-built Janus nanoparticles [267] starting from "seeds" of gadolin-

ium-based (NaGdF4:Yb,Tm@NaGdF4) upconversion quantum dots
(UCQD) separated from a mesoporous silica shell by a dense non-porous
silica layer in order to chemically-protect UCQD (Fig. 14a). Over the
mesoporous shell of the obtained spherical core (island), ethylene
bridged organosilane undergoes a sol-gel process to yield a cubic PMO
attached to the spherical island via an unprecedented anisotropic is-
land nucleation and growth process (Fig. 14a,b). The co-existence of sil-
ica and organosilica matrices herein, allowed the system to house si-
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multaneously hydrophilic (DOX) and hydrophobic (paclitaxel) drugs. In

addition, this novel system possesses quantum dot nuclei, allowing the

absorption of NIR light and the emission of visible wavelength. This

feature was intelligently harnessed by inserting azobenzene moieties in

the pores of the mesoporous silica shell. Azobenzene is a well known

as 'gatekeeper' for 2-3 nm sized pores and, due to reversible photoiso-

merization from cis to trans confirmations, serves as an impeller to pro-

mote cargo release upon UV/vis light exposure [18,204,266,268-271].

Moreover, in order to seal the whole Janus nanosystem, heat-sensitive

tetradecanol was used as a coating (Fig. 14a). In vitro assays on HeLa

cells were then performed with exposing the dual-loaded particles to

heat and/or light (Fig. 14c). The cell viability assays showed 1) excel-

lent biocompatibility of the system 2) no effect when only light was on,

simply because the heat-sensitive tetradecanol was still sealing the pores

and no drug was able to reach the cells. However, at least 25% cell

death occurred upon heat exposure only, due to the release of the pacli-

taxel from PMO pores. Importantly, upon light and heat excitation, both

drugs were released and more than 50% cell death was observed. These

results demonstrate the ability to create complex functionality wherein

drugs with opposite hydrophilic/phobic characters can be loaded and

independently released according to a logic system depending on spe-

cific stimuli.

5.1.2. Bimodal

Shortly later, and based on the same concept, this group reported

crescent-like eccentric "hollow" Janus constructs by post-etching a

dense silica core [272]. This hollowness, also called a single-hole is open

to the surface and can then bear large molecules. BSA proteins were

housed therein, sealed by heat-sensitive coating, and DOX found shelter

in the mesoporous shell. Again, the controlled dual release was success-

fully demonstrated upon heat and NIR stimuli.

5.2. Photodynamic therapy (PDT) and imaging with synergistic drug

release

Durand and co-workers pioneered the development of PMO mixed

systems with metal cores and two-photon photosensitizers and por-

phyrins embedded in the silsesquioxane framework, for 2 photon imag-

ing, photodynamic therapy and synergistic drug release.
In situ gold/(ethylene or benzene-based) PMO nanoparticles embed-

ded with a 2-photon (2hv) sensitizer were produced [273] by co-con-

densation. The 2hvmoiety provides the photodynamic therapy function-

ality, which is highly enhanced by the presence of Au cores. Drug-free

or DOX-loaded nanoparticles were incubated with MCF-7 cells and af-

terward exposed or not to 2hv-irradiation (Fig. 15a). Cell assays (Fig.

15b,c) show that even without any drug loaded, a cell killing was in-

duced (up to 40% for AE2 only due to PDT). For drug-loaded nanopar-

ticles, an autonomous drug release induced 40-45% cell death without

any PDT effect (laser off) and this percentage increased up to 76% after

the laser was turned on, thus beautifully highlighting the synergistic ef-

fects of drug release and PDT on these Au-2hv-PMOs nanocomposites.

In another example, octasilylated Zn-porphyrin (bearing 8 tri-

ethoxysilanes) prepared by CuAAC click chemistry [40,274-284] was

cocondensed with bisilylated ethylene group to produce 460 nm

nanoparticles [285]. Due to its large size and ir-rE stacking, the por-

phyrin aggregated in the framework and allowed two-photon imaging

with low laser power for MCF-7 cancer cells. This latter feature was
highlighted in parallel to an autonomous release of drug in the cancer
environment. Later on, the same group prepared nanodiamond cores
surrounded by ethane or ethylene based-PMO shells [183] (separated

by a thin silica layer) and they demonstrated that the photodynamic

therapy effect increased from 40% to up to 87% cell killing when syn-

ergistically combined with pH-induced drug release. Interestingly, this
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system indicated that reactive oxygen species (ROS) were produced and

detected following nanodiamond 2hv excitation.

5.3. High intensity focused ultrasound-HIFU with synergistic drug release

HIFU (Fig. 16a) is an FDA-approved technique used to burn prostate

cancer [286]. However, this technique may cause invasive ablation or

damage to surrounding healthy tissues. Here again, the diverse func-
tionalities of PMOs can help address this problem. HIFU-assisted re-

lease was demonstrated by Chen et al. [287] using previously described

DOX-loaded tetrasulfide-phenylene HPMOs [168] (Fig. lla). In fact, the

7c-n interaction between DOX and aromatic phenylene is sensitive to fo-

cused ultrasound and will be significantly weakened upon HIFU appli-

cation. In addition, it has been demonstrated on MSN and polymer mi-

celles that cleavage of disulfide bonds can occur under similar condi-

tions [288-290]. These features were therefore harnessed to actuate the

HIFU-triggered controlled drug release from these HPMOs nanocapsules

(Fig. 16b).
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In addition, HPMOs were successfully used in contrast-enhanced ul-

trasonography and HIFU-assisted release of paclitaxel-laden HPMOS ex-

hibited better tumor inhibition rates than free drug and loaded HPMOs
without ultrasound [291].

Importantly, HIFU assisted drug release has been also applied in

vivo where DOX loaded HPMOS were intratumorally injected in ICR
mice (n = 20) with rat sarcoma S-180 xenografts [292]. The exposure

to nanoparticles took place 2 weeks after the xenograft (when tumor

volume reached around 15mm3). Mice with and without HPMO injec-

tions were also exposed to HIFU (200W, 10 s). The volume of the tu-

mor was monitored every 2 days for 15 days (Fig. 16c). A synergistic ef-

fect of HIFU hyperthermia and drug release to inhibit tumor growth was
demonstrated: while tumors exposed solely to HIFU or DOX-HPM05 re-

sulted respectively in 34 or 59 wt% tumor growth inhibition, the com-

bined synergistic effect of HIFU and HPMOS exhibited up to 73 wt% in-

hibition compared to non-treated tumors (Fig. 16c,d).
In summary, HIFU, PDT and biocompatible 2hv-imaging were

proven to be very effective when combined with the capacity of

silsesquioxanes to deliver drugs. In the future, it will be of high impor-
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tance to take advantage of such systems in order to deliver more com-
plex payloads like biomolecules capable of gene silencing or editing.

6. Conclusion and insights

Functional organic and inorganic fragments synergistically exist in
each unit of the silsesquioxane framework building blocks plethora, en-
abling the development of NPs with diverse and complex characteris-
tics. The homogeneous distribution of organic moieties and their exten-
sive physicochemical input endows the material with new properties.
Clever means of therapeutic release were demonstrated by pendant and
bridged silsesquioxanes through different internal (cancer 1.t-environ-

ment mimics) and external (light) stimuli. Electrostatic repulsion/desta-
bilization by pH drop or light-induced charge reversal as well as reduc-
tive framework cleavage were brilliantly used to trigger drug release.
Other functions used in biomedicine (photodynamic therapy, imaging,
high intensity focused ultrasound) were combined to achieve synergistic
drug release. Silsesquioxane presents easy fine-tuning of the framework/
pore surface properties (hydrophobic, electrostatic, H-bond, z-z inter-

actions), enabling a superior loading efficiency and correspondingly a
lower required administered dose.

Silsesquioxane nanoparticles are fundamentally different than MSN
on the structural level as they are entirely built by organic bridges sep-
arating the siloxanes. The uniform distribution of organic fragments en-
dows silsesquioxanes with a superior activity compared to MSNs. The
possibility to create mixed silsesquioxanes (containing several organosi-
lanes moieties) also paves the way into synergistic applications and pos-
sibly new morphologies. Although the production of monosized and
porous silsesquioxane nanoparticles with large pore size and pore vol-
ume remains highly challenging compared to straightforward and
widely-studied MSNs, different PSQ, BSQ and PMOs have demonstrated
incredible capabilities in biology. Silsesquioxanes exhibit comparable
biocompatibility to MSNs and even better hemocompatibility due to
their reduced concentrations of surface silanols. However due to their
lower silanol content and the reduced acidity of silanols, silsesquiox-
anes have a higher isoelectric point and reduced charge compared to
MSNs resulting in lower stability in nearly neutral conditions and dif-
ferent surface charge when exposed to the same conditions (i.e. neutral
pH). This latter feature was exploited for payload release through spon-
taneous charge reversal, without any further functionalization, which is
unique for silsesquioxanes.

In spite of the great chemical versatility of silsesquioxane nanocar-
riers, we found a lack in the literature of loading uncommon drug mol-
ecules. Also in order to shed more light on mesoporous silsesquioxane
nanoparticles, reproducible synthesis with large pores capable of accom-
modating larger and more charged biomolecules is an urgent need and
will be a brilliant advance in the field. Research on BSQ and PMOs
should be pushed towards "combo combar [293] to achieve co-deliv-

ery of multiple components like drug/siRNA to suppress drug efflux and
reduce multiple drug resistance mechanisms, but also, like inhibitors/
cytokines to inhibit/delay tumor growth thus increasing the efficiency
of natural killer cells [294].

Overall, although silsesquioxane nanosystems exhibit several advan-
tages over the MSNs, we estimate that it is too early to talk about a
complete superiority of the pure organosilica as more research is still
needed to resolve problems and upscale their syntheses as well as un-
derstand the potential relationship between individual silsesquioxane
frameworks with bio-relevant systems.

However, we believe that in the near future potent mesoporous
silsesquioxane nanoparticles will bring novel solutions to existing prob-
lems. Maybe the dawn of silsesquioxanes arose due to scientific curiosity
but they now promise to solve complex problems in delivery of different
molecules of interest.
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